

IAU XXVIII General Assembly | Aug. 20-31, 2012 | Beijing, CHN

JD-7

Connecting kinematic and dynamic reference frames by VLBI

Harald Schuh
Lucia Plank
Johannes Böhm
Matthias Madzak

IAU

XXVIII General Assembly
20-31 August, 2012
Beijing, China

Motivation

- ties between TRF and CRF by EOP
- ties between various realizations of the CRS
 - optical ↔ radio frequencies
 - kinematic ↔ dynamic (ephemerides)
 - but: direct ties between
 TRF ↔ DRF (satellites, spacecrafts) and

 $CRF \leftrightarrow DRF$ are also needed

20.-31. Aug. 2012

IAU 2012, JD 7

Frame ties: general remarks

- Ties between the ICRF and dynamical realizations of the ICRS (satellite orbits, spacecraft ephemerides) can be established by differential VLBI (D-VLBI) observations.
- The IERS Earth Orientation Parameters (EOP) provide the permanently changing tie between the ICRF and the ITRF.
- Inter-technique co-location sites are the backbone of the current combined solution of the ITRF.
- Local ties on ground (on fundamental geodetic sites)
 need to be improved for future ITRF improvement.
- Local ties in space (e.g. various techniques on the same satellite) need also to be established.

VLBI for space applications

... VLBI with sources (=targets) alternatively to quasars, mostly within the solar system

Observing modes (1)

"classical" VLBI

differential (D-)VLBI

- switching between satellite/spacecraft and quasar
- or same-beam method (e.g. SELENE, Chang'e)
- signals travel through the same atmosphere
 - → many errors cancel out

Recent developments

Earth

Promising recent missions and tests

- Japanese SELENE lunar mission
- Chinese Chang'e lunar mission
- VLBI observations to GLONASS satellites (Tornatore & Haas)

Recent technical developments

- VLBI transmitters as payload
- VLBI2010
- 'Twin telescopes' (two identical radiotelescopes at same site, e.g. Wettzell) offer new observing modes

SELENE: same-beam D-VLBI improved the orbit consistency from several hundreds to several tens of meters (Goossens et al., JoG, 2010)

Rstar

Moon

Main orbiter (Kaguya)

Level of cancellation for D-VLBI

... as determined empirically from SELENE D-VLBI observations [Plank et al., Proc. IVS GM 2012]

(values in brackets repr. long baselines)	au	Δau
GEOMETRY		
Antenna $\pm 5 \text{ cm}$	300 ps	1-2 ps
Orbit $\pm 10 \text{ m}$	150-1000 ps	2-8 ps
EOP	5 (60) ps	< 0.05 (0.1) ps
dUT1: 5 ms/xp,yp: 200 mas/dX,dY: 300 mas		
ATMOSPHERE		
Hydrostatic troposphere, a priori	2-20 (10-60) ns	30-300 (50-1000) ps
Wet troposphere, ECMWF	1-3 (4) ns	4-40 (10-60) ps
Ionosphere, TEC-maps	1.5 (2-10) ns	10 (80) ps

"single" delay au

approx. factor 100

differenced delay

Δτ

Observing modes (2)

Differential (D-) VLBI

Co-location in space

- VLBI-transmitters as payload
- Studies: GRASP (JPL),
 Micro-GEM, Nano-GEM (GFZ)

Co-location in Space

Proposed NASA Mission: Geodetic Reference Antenna in Space (GRASP)

- Co-location of geodetic techniques contributing to the TRF
- Determine TRF with 1 mm accuracy and 0.1 mm/yr stability
- Orbit: 1350 x 850 km polar, sun-synchronous

Visibility

- Can we observe satellites in VLBI mode?
- Visibility study with possiple VLBI 2010 network

GRASP visibilities

- GRASP can be observed in VLBI mode only partly,
- by 2 to max. 3 regional antennas at the same time.
- June 2012: GRASP was not selected by NASA but further studies/projects are planned.

5 Cn CNARY IS
6 Gg GGAO2010
7 Kk KOKEE
8 Ar ARECIBO
9 Ts TSUKUB32
10 Ke KATH12M
11 Kr KOREA
12 Gd GOLD2010
13 Yg YARRA12M
14 Hh HARTRAO

Az AZOR2010

15 Yb YEBE201016 Wz WETZ201017 Ny NYALES2018 Mp MT PLSNT

Observing modes (3)

- Differential (D-) VLBI
- Co-location in space

VLBI observations of GNSS-Satellites

GNSS visibilities

Target parameters

e.g.

- Satellite orbit /spacecraft position
 - not sensitive in line-of-sight
 - → constrain satellite height

Target parameters

e.g.

satellite position /orbit

- not sensitive in line of sight
 - → constrain satellite height

- simulations with GNSS networks (4 stations)
- accuracies are not very good yet (cm-level)
 - → special scheduling strategies are needed

GNSS simulation

GNSS simulation

Target parameters

e.g.

- satellite position /orbit
 - not sensitive in line of sight
 - → constrain satellite height
- station repeatabilities
 - simulations with GNSS networks (4 stations)
 - accuracies are not very good yet (cm-level)
 - → better scheduling is needed
- frame ties (described by e.g. 3 angles)

Target parameters

e.g.

- satellite position /orbit
 - not sensitive in line of sight
 - → constrain satellite height
- station repeatabilities
 - simulations with GNSS networks (4 stations)
 - accuracies are not very good yet (cm-level)
 - → better scheduling
- frame ties (e.g. 3 angles)

Remark: troposphere is once again the limiting factor!

Conclusions

- Recent results motivate to use VLBI measurements to satellites for local ties, space ties, and frame ties.
- However, more research on the technical realization and observing strategies is needed.
- Modified VLBI Software (e.g. Vienna VLBI Software, VieVS) allows to simulate observations to satellites and gain information about achievable accuracies.
- Currently, VLBI observations to GNSS satellites are tested and several proposals for missions with a dedicated VLBI 'signal' are going on.

THANK YOU FOR YOUR ATTENTION!

harald.schuh@tuwien.ac.at

Motivation 1

Navigation in space

- deep space navigation
 - routinely done (NASA, ESA)
 - sensitive perpendicular to the line of sight (LoS)
- lunar missions
 - SELENE, Chang'e

Motivation 3

Co-location in space

Inter-technique ties in space: e.g. GNSS-VLBI Realizations:

- co-location in space (a)
 - studies: GRASP (JPL), MicroGEM (GFZ),...
- using GNSS satellites as VLBI targets (b)

GNSS visibilities

Simulated turbulence

Vienna VLBI Software (VieVS) simulator [Pany et al., 2010]; N = 30

Effect of trop. turbulence in diff. delays

VieVS-simulator [Pany et al., 2010]; N = 30

D-VLBI

but: for close satellites/spacecrafts it is difficult to find nearby radio sources

- e.g. SELENE (sc-sc): max. separation angle0.56° (same beam)
- 4-station GNSS network:
 the satellite vector is different for each baseline
 angular distance between satellite & quasar:

$$\Delta eI = \pm 4^{\circ}$$

$$\Delta az = \pm 10^{\circ}$$