

Linking the Planetary Ephemeris to the ICRF

W. M. Folkner

Jet Propulsion Laboratory
California Institute of Technology

28 August 2012

Targeting Accuracy for Mars Landers

- Orientation of ephemeris to the celestial reference frame has been the limiting error source for Mars lander missions.
 - MSL required 200 m knowledge of Earth-Mars vectors (~ 0.2 mas)
 - Accuracy met through long program of spacecraft VLBI measurement with continued improvement in measurement accuracy
 - More accurate landing limited by wind speed and drift on parachute.

Spacecraft VLBI

- VLBI measures spacecraft angular position relative to radio reference frame
 - MGS, Odyssey, MRO
 - MGN, VEX, Ulysses, Cassini
- Doppler ties spacecraft position to center of planet
 - MGS, ODY, MRO accuracy <10m
- VLBI measurement types;
 - Doubly-difference range (ΔDOR)
 - DSN and ESA stations
 - Differenced carrier phase
 - Very Long Baseline Array

Baselines

Source Structure

- Long baselines give good measurement accuracy and high resolving power
- Brighter sources are more likely to have observable structure, making center of source position dependent on baseline and frequency

P. Charlot IVS General Meeting 2002

Frequency and Media Errors

- DSN VLBI delay computed by phase differences $\Delta \phi / \Delta f$
 - Spacecraft and radio source have very different spectra
 - Narrow bandwidths about spacecraft DOR tones are sampled
 - Instrument phase response (ripple) can vary between S/C & radio source
- Signal delay due to troposphere and ionosphere is partly calibrated and partly canceled between s/c and radio source

Spacecraft Orbit Accuracy

- Spacecraft orbits generally determined by Doppler shift
- Low orbits give larger Doppler shift
 - More sensitive to gravity field and atmospheric drag
 - Better orbit accuracy after determination of gravity field
- MGS, Odyssey, MRO are low circular orbiters, with good Mars gravity field
- MEX, VEX, MGN (early mission) are elliptical orbiters
- Cassini has long orbit period

Measurement Improvements

- Since 2001 VLBI measurement accuracy has been improved in stages by:
- Observation of multiple sources near spacecraft to better cancel troposphere and ionosphere effects
- Increased sampling bandwidth to increase radio source SNR
 - Allows use for fainter, more point-like sources
- Digitization of signal at higher frequency IF
 - Reduces phase ripple effects

Mars VLBI Accuracy

Spacecraft VLBI Error Budget

Mars Spacecraft VLBI Residuals

Venus VLBI Measurements

- MGN and VEX measurements used telemetry harmonics
 - no DOR tones available
- VEX and early MGN orbits were elliptical so orbit accuracy also limits VLBI measurement accuracy
- Range to VEX ties Venus orbit orientation to Earth orbit and so to ICRF with more accuracy

Cassini VLBA Observations

- Cassini observed using VLBA using carrier phase rather than DOR tones
 - Measurement accuracy limited by radio source position accuracy
 - Will be improved by more observations of radio sources used

D. Jones et al., AJ 141:29, 2011

Summary

- Earth, Mars, Venus, and Saturn orbits now tied to ICRF 2.0 with accuracy of ~ 0.2 mas
- MESSENGER range will allow tie to Earth orbit & ICRF
 - Current data has only northern hemisphere periapses
 - Which limit orbit accuracy
 - Extended mission will have southern hemisphere periapses
- Juno arrival at Jupiter in July 2016
 - Will provide opportunity to perform VLBI to tie to ICRF

Acknowledgements

- Radio catalog
 Chris Jacobs (JPL) & many others
- Venus Express Trevor Morley (ESOC)
- Mars VLBI data Jim Border (JPL)
- Mars spacecraft orbits Alex Konopliv (JPL)
- Cassini VLBA data Dayton Jones (JPL), Ed Fomalont (NRAO)
- Cassini spacecraft orbits Bob Jacobson (JPL)