

Outline

- Mission summary
- Main features of Gaia observations
- Accuracy
- Early operations schedule
- · Planned releases

Gaia quick fact sheet

- Main goal: astrometry and photometric survey to V = 20
 - $\sim 10^9$ sources
 - stars, QSOs, Solar system, galaxies

- $10 \mu as V < 13 300 \mu as V = 20$
- Regular scan of sky over 5 yrs
 - each source observed about ~80 times
 - internal autonomous detection system
- Launch fall 2013 from Kourou
- Current integration of P/L and S/M advancing smoothly

Observation principles

- Gaia is a scanning mission
 - no pointing, no change in the schedule

- Gaia gathers astrometric, photometric and spectroscopic data
 - each source is observed ~ 75 times in astrometry & photom. , 50 in spectroscopy
- Gaia has an internal system of detection
 - sensitivity limited detection at $G \sim R = 20$
- Objects are reasonably regularly measured during the mission
 - orbit reconstruction
 - light curves

Main Activities on the S/C

- Service Module finalised
- Thermal/vacuum tests during summer

- Deployable Sunshield qualified
- Put into storage

Main Activities on the P/L

- Assembly, Integration and Testing of the payload
- Telescope alignment completed with final checks underway
- Focal Plane Assembly completed
- On-going final thermo-mechanical tests

Gaia Accuracy at mean epoch

- Five year mission, sky -averaged
 - reference value: σ_{ω} = 25 μ as @ G = 15
 - based on data from J. De Bruijne (ESA)

Sky distribution – Positions (~ 2016.5)

• Plots for G = 15, but scalable to other magnitudes

$$<\sigma_{\alpha}^*>=21\mu as$$

$$\sigma_{\alpha}^*$$
 – μ as

$$<\sigma_{\delta}>=18\mu as$$

 σ_{δ} – μ as

Sky distribution – Parallaxes

• Plot for G = 15, but scalable to other magnitudes

$$\sigma_{\varpi} - \mu$$
as

$$<\sigma_{\varpi}>=25~\mu as$$

Sky distribution – Proper motions

• Plots for G = 15, but scalable to other magnitudes

$$<\sigma_{\mu_{\alpha}}^{*}>=15\mu$$
as yr⁻¹

$$\sigma_{\mu_{\alpha}}^{*} - \mu$$
as yr⁻¹

$$<\sigma_{\mu_{\delta}}>=13\mu as yr^{-1}$$

 $\sigma_{\mu_{\delta}} - \mu$ as yr⁻¹

Gaia Accuracy in the past and future

- Covariance matrix fully propagated at t = 1890..2090 step 1 yr
 - sky averaged accuracy
 - mean accuracy between α and δ

Main feature of the Gaia Frame

- ICRF directly in the visible
- · Between 20,000 et 50,000 primary sources
- Inertiality < 0.3 muas/yr

Early Operations Schedule I

- L = Launch in fall 2013
 - Cruise and insertion to L2 takes about one month
 - Followed by outgassing and return to thermal equilibrium
- · First TM (Telemetry) data

- \rightarrow L + 2.5 months
- Instrument Commissioning Phase
- → + 4 to 6 weeks
- In-orbit spacecraft verification and early calibration
- Evaluation of the scientific performance
- Test of the different operation modes, adjusting AOCS, spin

Early Operations Schedule II

Processing initialisation phase

- → + ~ 2 months
- use a specific scanning mode with repeated observations
- Initialise DPAC processing subsystems
- More in-depth instrument calibration

Start of Routine Operations: Launch + 6 months

Data Releases: some issues I

Gaia principles involve global astrometry

- no immediate scientific data from single observations
- At least one full sky coverage needed for an astrometric solution
 - this takes at least 6 months with the Gaia scanning law
- no valuable parallaxes without at least 12 months of data
 - but sampling might be not sufficient in many cases

Gaia is self-calibrating

- instrument parameters, attitude and stellar parameters are determined in an iterative loop
- colors must be known to achieve good accuracy

Data Releases: some issues II

- The Data Consortium Analysis (DPAC) needs time to initialise and certify its processing system
 - The processing itself is organised into:
 - · daily operations for initial data management
 - cycles of about 6 months for global processing
 - There is a time dependency between systems
 - eg: attitude must be known to process solar system objects
- Any data release must be carefully checked and documented
 - This must be agreed between ESA and the DPAC

Intermediate Releases Plans

- Intermediate Data Release Scenario agreed between ESA and DPAC
- Science Alerts as soon as possible
 - some should be within a day after observations after the system is validated
- L+22m: positions, G-magnitudes, proper motions to Hipparcos stars, ecliptic pole data
- L+28m: + first 5 parameter astrometric results, bright star radial velocities, integrated BP/RP photometry
- L+40m: + BP/RP data, some RVS spectra, astrophysical parameters, orbital solutions for short period binaries
- L+65m: + variability, solar system objects

