A new numerical theory of Earth rotation

E. Gerlach, S. Klioner and M. Soffel

Lohrmann Observatory

Technical University Dresden
Motivation

- currently used theories of Earth rotation
 - start from a theory for rigid Earth (REN2000, SMART97 etc.)
 - MHB2000 transfer function
 - IAU 2000 precession-nutation model (accuracy: $\sim 300 \mu$as)
- observation of Earth rotation with very high accuracy
Motivation

- currently used theories of Earth rotation
 - start from a theory for rigid Earth (RENN000, SMART97 etc.)
 - MHB2000 transfer function
 - IAU 2000 precession-nutation model (accuracy: \(\sim 300 \mu\text{as} \))
- observation of Earth rotation with very high accuracy

- our goal: a consistent relativistic model of Earth rotation
 - purely numerical
 - fully consistent with General Relativity
 - model for a 'realistic' Earth
Our relativistic model - scheme

- input data:
 - gravity field model e.g.: EGM2008
 - ephemerides e.g. DE421
 - atmosphere, ocean e.g. ERA40

- torque D
- tidal deformation
- mass redistribution
- relative angular momentum
- tensor of inertia I
- rotational deformation

- relativistic effects:
 - relativistic torques
 - geodetic precession
 - relativistic time scales
 - relativistic scaling

- output data: Euler angles: ϕ, ψ, ω and their time derivatives in the GCRS

IAU General Assembly, JD 7, 28. August 2012
A 3-layered Earth - included effects in detail

- Rotational and tidal deformation
 - Using compliance parameters - Mathews et al. (1991)
 - Changes tensor of inertia ($\delta C_{13}, \delta C_{23}$)

- Coupling torques between layers
 - Gravitational, topographic and electromagnetic torques
 - Model from Mathews et al. (1991), Buffet et al. (2002)

- Inclusion of atmosphere and ocean
 - No tidal model, but re-analysis data (e.g. ERA 40)
 - Relative angular momenta and $\delta C_{13}, \delta C_{23}, \delta C_{33}$
rotational and tidal deformation
 ➔ using compliance parameters - Mathews et al. (1991)
 ➔ changes tensor of inertia ($\delta C_{13}, \delta C_{23}$)

coupling torques between layers
 ➔ gravitational, topographic and electromagnetic torques
 ➔ model from Mathews et al. (1991), Buffet et al. (2002)

inclusion of atmosphere and ocean
 ➔ no tidal model, but re-analysis data (e.g. ERA 40)
 ➔ relative angular momenta and $\delta C_{13}, \delta C_{23}, \delta C_{33}$

A lot of parameters for fitting!
Beyond Earth - relativistic rotation of other bodies

- highly accurate, relativistic models of e.g. Mercury of interest
- relativistic effects expected to be much larger

<table>
<thead>
<tr>
<th>body</th>
<th>geodetic precession [”” per century]</th>
<th>geodetic nutation [µas]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>1.92</td>
<td>153</td>
</tr>
<tr>
<td>Mercury</td>
<td>21.49</td>
<td>5080</td>
</tr>
<tr>
<td>Venus</td>
<td>4.32</td>
<td>85</td>
</tr>
<tr>
<td>Mars</td>
<td>0.68</td>
<td>567</td>
</tr>
</tbody>
</table>

- our code is ideal to study this
- mostly simple changes of constants etc.