

A convention for Coordinated Universal Time

Dennis D. McCarthy

Rathaus Wurzburg
$12-14^{\text {th }}$ Century

History

- Clocks have long ago surpassed the Earth's rotation as a source for accurate time.
- Celestial navigators need to know Earth's rotation angle (provided by a function of UT1) to compute accurate directions.
- Coordinated Universal Time redefined in1970 to provide knowledge of the Earth's rotation angle by time signals to an accuracy of ~ 1 second for navigators.
- GPS has made celestial navigation virtually obsolete.
- But UTC is still used to provide Earth rotation to low accuracy (~ 1 second) users. (This information is routinely available to accuracy of 0.000010 seconds for high-accuracy users.)

Why do we still have leap seconds?

1. Provides low-accuracy knowledge of Earth rotation for specialists.

- Telescope pointing software
- Some legacy orbit analysis software users

2. Provides loose connection between civil time and time historically determined from the solar hour angle. (Those can differ now by up to 5 hours because of time zones, daylight savings time, etc.)

Can we know when we will need to stop all the clocks in the world?

- Earth rotation is difficult to predict far in advance
- Tides slow it down but geophysical decadal variations have significant effects.

What would happen if we adopted
a rule like we do for leap years?

TDT-UT1

Decadal Length-of-day Variations

From Gross, R. S., Earth Roation Variations - Long Period, in Physical Geodesy, edited by T. A. Herring, Treatise on Geophysics, Vol. 11, Elsevier, Amsterdam
Jackson A., Bloxham J., and Gubbins D. (1993) Time dependent flow at the core surface and conservation of angular momentum in the coupled core-mantle
system. In Dynamics of the Earth's Deep Interior and Earth Rotation (eds. J.-L. Le Mouël, D. E. Smylie, and T. Herring). American Geophysical Union

Geophysical Monograph Series vol. 72, Washington, D. C., pp. 97-107.
Jackson A. (1997) Time-dependency of tangentially geostrophic core surface motions. Phys. Earth Planet. Inter. 103, 293-311.
Pais A. and Hulot G. (2000) Length of day decade variations, torsional oscillations, and inner core superrotation: Evidence from recovered core surface zonal
flows. Phys. Earth Planet. Inter. 118, 291-316.
Stephenson F. R. and Morrison L. V. (1984) Long-term changes in the rotation of the Earth: 700 B.C. to A.D. 1980. Phil. Trans. R. Soc. Lond. A313, 47-70.
McCarthy D. D. and Babcock A. K. (1986) The length of day since 1656. Phys. Earth Planet. Inter. 44, 281-292.
Gross R. S. (2001) A combined length-of-day series spanning 1832-1997: LUNAR97. Phys. Earth Planet. Inter. 123, 65-76.

Leap Seconds per Year

Leap Seconds per Year

Leap Seconds per Year

Leap Seconds per Year

Conclusions

- Conventional rule will result in UT1-UTC of the order of a few minutes
- Conventional rule will require leap seconds
- twice per year beginning in 2030
- every quarter beginning in 2250
- every month after 2600
- Do we want to stop every clock in the world every month for 1 second?

