Phoebe's orbit from ground-based and space-based observations

J.Desmars^{1,2}, S.N.Li^{1,2}, R.Tajeddine², Z.H.Tang¹

¹Shanghai Astronomical Observatory

²Institut de Mécanique Céleste et de Calcul des Éphémérides

August 27, 2012
IAU Meeting Joint Discussion 7

Introduction

Phoebe

- Phoebe: Saturn IX discovered by W.H. Pickering in 1899
- First object discovered by photography
- Diameter : ~ 220 km
- Period : ~ 18 months
- Retrograde orbit ($i = 176 \deg$)
- Visited by Cassini on June 2004

Introduction

Ephemeris of Phoebe

The ephemeris of Phoebe is not very accurate :

- Dynamical model (perturbations of planets)
- Astrometry (non homogeneus observations)
- Dependance of Saturn's motion theory (planetary ephemerides)

Difference between several ephemeris of Saturn

Difference between several ephemeris of Saturn

Dynamical Model

Dynamical Model

Figure 1: Comparision of the magnitude of perturbations

Flexible Dynamical Model

Dynamical Model

The dynamical model can take into account :

- Perturbations of the planets (with most recent theory : DE423 or INPOP10)
- Flatness of Saturn (J_2, J_4)
- Perturbations of the main Saturnian satellites (Theory of Lainey 2012)

The equations of motions are numerically integrated using the RADAU integrator and 6 initial parameters (initial position and velocity) are deduced from least-square method.

Astrometry

Astrometry of Phoebe

Statistics of Phoebe's Observations

- Total number of observations: 3523 from 1898 to 2011
- Total number of ground-based observations: 3292
- Total number of space-based observations: 231 (Voyager 1981: 8, Cassini 2004 : 223)
- Also 5 observations from WISE considered as ground-based observations

Most of the observations are in absolute coordinates ⇒ the reduction will depend on catalogue & the computed positions depend on planet's theory

Figure 2: Distribution of Phoebe's observations per year

Improvement of astrometry

New reduction of old observations from Pickering

Pickering C.D., Lick Observatory Bulletin, 1904

- These observations are published compared to star positions (poor accurate stellar catalogue)
- With current stellar catalogue, it is possible to measure the absolute position of Phoebe
- Unfortunalty, the proper motions of stars are quite inaccurate and the accuracy of observations remains bad.

 \Rightarrow Solution : Gaia stellar catalogue (accurate position and proper motions of stars)

Bias in stellar catalogue

Chesley et al., 2010, (Icarus 210) propose a treatment of star catalog biases in asteroid astrometrical observations

- 1869 observations from 1998 to 2011 can be corrected from star catalog bias (about 55%)
- the correction can reach almost 0.5 arcsec

Figure 3: Bias correction for Phoebe observations

Results

Ephemeris of Phoebe

Four models

- Model 1 : Planets (all planets + Moon + Pluto) + 8 Satellites + J_2
- Model 3 : Planets (Sun, Jupiter) + Titan
- Model 4 : Planets (Sun, Jupiter)
- ⇒ Comparison of the four models fitted on Phoebe observations

Post-fit Residuals

Table 1: Mean and rms of O-C

		ground-based obs.			Cassini obs.		
		μ	rms	Ν	μ	rms	N
Model 1	α	0.0097	0.4606	3243/ 3292	0.1411	2.2020	223/223
	δ	0.0837	0.4885	3243/ 3292	-0.2988	1.5523	223/223
Model 2	α	0.0096	0.4607	3243/ 3292	0.1415	2.2020	223/223
	δ	0.0837	0.4886	3243/ 3292	-0.2980	1.5523	223/223
Model 3	α	0.0090	0.4635	3243/ 3292	0.1350	2.2016	223/223
	δ	0.0803	0.4891	3243/ 3292	-0.2992	1.5519	223/223
Model 4	α	0.0086	0.4714	3243/ 3292	0.1212	2.2009	223/223
	δ	0.0724	0.4969	3243/ 3292	-0.3022	1.5512	223/223

Note: O-C > 5 arcsec were rejected

In distance, the residuals represent 4300km for ground-based observations and 4.3km for Cassini data

Figure 4: Post-fit residuals

Correction of bias in stellar catalogs

Table 2: Post-fit residuals after correction or not

		uncor	rected	corrected		Number
		μ	rms	μ	rms	rvumber
Model 1	α	0.0253	0.4769	0.0097	0.4606	3243/3292
	δ	0.0875	0.4890	0.0837	0.4885	3243/3292

Note : O-C > 5 arcsec were rejected

Conclusion

- Development of new dynamical model
- Improvement of astrometry (much more observations, correction of bias, Cassini data)
- Accurate ephemeris of Phoebe

Prospects

Gaia stellar catalog will allow an improvement of Phoebe astrometry :

- accurate positions of stars for reduction
- accurate proper motions of stars for reduction of old data (Pickering)

